Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771240

RESUMO

In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Camundongos Knockout , Neurônios , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Masculino , Inibição Neural/fisiologia , Inibição Neural/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Eletroencefalografia
2.
J Biochem Mol Toxicol ; 37(3): e23283, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541368

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.


Assuntos
Citotoxinas , Nanotubos de Carbono , Neurônios , Linhagem Celular Tumoral , Humanos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio/análise , Citotoxinas/toxicidade , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948423

RESUMO

Depression associated with poor general medical condition, such as post-stroke (PSD) or post-myocardial infarction (PMID) depression, is characterized by resistance to classical antidepressants. Special treatment strategies should thus be developed for these conditions. Our study aims to investigate the mechanism of action of 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17), a recently designed thiadiazine derivative with putative neuro- and cardioprotective and antidepressant-like effects, using combined in silico (for prediction of the molecular binding mechanisms), ex vivo (for assessment of the neural excitability using c-Fos immunocytochemistry), and in vivo (for direct examination of the neuronal excitability) methodological approaches. We found that the predicted binding affinities of L-17 to serotonin (5-HT) transporter (SERT) and 5-HT3 and 5-HT1A receptors are compatible with selective 5-HT serotonin reuptake inhibitors (SSRIs) and antagonists of 5-HT3 and 5-HT1A receptors, respectively. L-17 robustly increased c-Fos immunoreactivity in the amygdala and decreased it in the hippocampus. L-17 dose-dependently inhibited 5-HT neurons of the dorsal raphe nucleus; this inhibition was partially reversed by the 5-HT1A antagonist WAY100135. We suggest that L-17 is a potent 5-HT reuptake inhibitor and partial antagonist of 5-HT3 and 5-HT1A receptors; the effects of L-17 on amygdaloid and hippocampal excitability might be mediated via 5-HT, and putatively mediate the antidepressant-like effects of this drug. Since L-17 also possesses neuro- and cardioprotective properties, it can be beneficial in PSD and PMID. Combined in silico predictions with ex vivo neurochemical and in vivo electrophysiological assessments might be a useful strategy for early assessment of the efficacy and neural mechanism of action of novel CNS drugs.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Hidrazinas/farmacologia , Infarto do Miocárdio/complicações , Acidente Vascular Cerebral/complicações , Animais , Antidepressivos/uso terapêutico , Simulação por Computador , Depressão/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hidrazinas/uso terapêutico , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT3 de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
4.
Toxicol Appl Pharmacol ; 430: 115725, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536444

RESUMO

An effective in vitro screening assay to detect seizure liability in preclinical development can contribute to better lead molecule optimization prior to candidate selection, providing higher throughput and overcoming potential brain exposure limitations in animal studies. This study explored effects of 26 positive and 14 negative reference pharmacological agents acting through different mechanisms, including 18 reference agents acting on glutamate signaling pathways, in a brain slice assay (BSA) of adult rat to define the assay's sensitivity, specificity, and limitations. Evoked population spikes (PS) were recorded from CA1 pyramidal neurons of hippocampus (HPC) in the BSA. Endpoints for analysis were PS area and PS number. Most positive references (24/26) elicited a concentration-dependent increase in PS area and/or PS number. The negative references (14/14) had little effect on the PS. Moreover, we studied the effects of 15 reference agents testing positive in the BSA on spontaneous activity in E18 rat HPC neurons monitored with microelectrode arrays (MEA), and compared these effects to the BSA results. From these in vitro studies we conclude that the BSA provides 93% sensitivity and 100% specificity in prediction of drug-induced seizure liability, including detecting seizurogenicity by 3 groups of metabotropic glutamate receptor (mGluR) ligands. The MEA results seemed more variable, both quantitatively and directionally, particularly for endpoints capturing synchronized electrical activity. We discuss these results from the two models, comparing each with published results, and provide potential explanations for differences and future directions.


Assuntos
Convulsivantes/toxicidade , Potenciais Evocados/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Convulsões/induzido quimicamente , Testes de Toxicidade , Animais , Células Cultivadas , Feminino , Idade Gestacional , Ácido Glutâmico/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Técnicas In Vitro , Ligantes , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Reprodutibilidade dos Testes , Medição de Risco , Convulsões/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais
5.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361628

RESUMO

In excitable cells, mitochondria play a key role in the regulation of the cytosolic Ca2+ levels. A dysregulation of the mitochondrial Ca2+ buffering machinery derives in serious pathologies, where neurodegenerative diseases highlight. Since the mitochondrial Na+/Ca2+ exchanger (NCLX) is the principal efflux pathway of Ca2+ to the cytosol, drugs capable of blocking NCLX have been proposed to act as neuroprotectants in neuronal damage scenarios exacerbated by Ca2+ overload. In our search of optimized NCLX blockers with augmented drug-likeness, we herein describe the synthesis and pharmacological characterization of new benzothiazepines analogues to the first-in-class NCLX blocker CGP37157 and its further derivative ITH12575, synthesized by our research group. As a result, we found two new compounds with an increased neuroprotective activity, neuronal Ca2+ regulatory activity and improved drug-likeness and pharmacokinetic properties, such as clog p or brain permeability, measured by PAMPA experiments.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores , Acidente Vascular Cerebral/tratamento farmacológico , Tiazepinas , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Mitocôndrias , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Ratos , Tiazepinas/síntese química , Tiazepinas/farmacologia
6.
Methods Mol Biol ; 2311: 167-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033085

RESUMO

The use of sensory neurons and assessment of neurite outgrowth in vitro is an important part of understanding neuronal development and plasticity. Cultures of rat dorsal root ganglion (DRG) neurons provide quantitative results very quickly and, when grown on growth promoting or inhibitory substrates, can be utilized to study axonal growth, neurotrophic dependence, and structure and function of growth cones. Since we are interested in axon regeneration and targeting, we have sought to promote neurite outgrowth by refining the techniques of growing DRG neurons in culture. This chapter describes detailed methods for the dissection and purification of DRG neurons and quantitative assessment of neurite on promoting or inhibitory substrates.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Gânglios Espinais/citologia , Neurônios/fisiologia , Ratos Sprague-Dawley
7.
Cells ; 10(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804841

RESUMO

To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , Neuroproteção , Oxigênio/farmacologia , Geleia de Wharton/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Células Clonais , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores
8.
Neurotox Res ; 39(3): 800-814, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33689147

RESUMO

The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.


Assuntos
Duodeno/efeitos dos fármacos , Sistema Nervoso Entérico/efeitos dos fármacos , Fluoretos/toxicidade , Neurônios/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica/métodos , Animais , Duodeno/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Masculino , Neurônios/metabolismo , Mapas de Interação de Proteínas/fisiologia , Ratos , Ratos Wistar
9.
Chem Res Toxicol ; 34(5): 1319-1328, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33611912

RESUMO

Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 weeks. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential analysis defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics analysis revealed that these differentially expressed proteins and metabolites were involved in four major biological processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biological effects induced by TCS exposure.


Assuntos
Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolômica , Proteômica , Triclosan/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Biologia Computacional , Relação Dose-Resposta a Droga , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Triclosan/administração & dosagem , Triclosan/química
10.
FEBS J ; 288(5): 1457-1461, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32805742

RESUMO

In neurodegenerative diseases, a select set of neuron population displays early vulnerability and undergoes progressive degeneration. The heterogeneity of the cerebral cortex and the heterogeneity of patient populations diagnosed with the same disease offer many challenges for developing effective and long-term treatment options. Currently, patients who are considered to have a 'rare' disease are left with no hopes for cure, and many of the neurodegenerative diseases progress fast without any effective solutions. However, as our understanding of disease mechanisms evolve, we begin to realize that the boundaries between diseases are not as sharp as once believed. There are many patients who develop disease due to common underlying causes and mechanisms. As we move forward with drug discovery effort, it becomes obvious that we will have to shift our focus from finding a cure for a disease, to finding solutions to the disease-causing cellular mechanisms so that patients can be treated by mechanism-based strategies. This paradigm shift will lay the foundation for personalized medicine approaches for neurodegenerative disease patients and patients diagnosed with a rare disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Drogas em Investigação/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Medicina de Precisão/tendências , Doenças Raras/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Autofagia/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Reposicionamento de Medicamentos/métodos , Acessibilidade aos Serviços de Saúde/organização & administração , Humanos , Inflamação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Raras/metabolismo , Doenças Raras/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
11.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187049

RESUMO

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Flavonoides/economia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
12.
Toxicol Sci ; 178(1): 71-87, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866265

RESUMO

Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Convulsões/diagnóstico , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Roedores , Convulsões/induzido quimicamente
13.
J Vis Exp ; (162)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32831302

RESUMO

Neurite outgrowth assay and neurotoxicity assessment are two major studies that can be performed using the presented method herein. This protocol provides reliable analysis of neuronal morphology together with quantitative measurements of modifications on neurite length and synaptic protein localization and abundance upon treatment with small molecule compounds. In addition to the application of the presented method in neurite outgrowth studies, neurotoxicity assessment can be performed to assess, distinguish and rank commercial chemical compounds based on their potential developmental neurotoxicity effect. Even though cell lines are nowadays widely used in compound screening assays in neuroscience, they often differ genetically and phenotypically from their tissue origin. Primary cells, on the other hand, maintain important markers and functions observed in vivo. Therefore, due to the translation potential and physiological relevance that these cells could offer neurite outgrowth assay and neurotoxicity assessment can considerably benefit from using human neural progenitor cells (hNPCs) as the primary human cell model. The presented method herein can be utilized to screen for the ability of compounds to induce neurite outgrowth and neurotoxicity by taking advantage of the human neural progenitor cell-derived neurons, a cell model closely representing human biology."


Assuntos
Bioensaio/métodos , Células-Tronco Neurais/patologia , Crescimento Neuronal , Neurônios/patologia , Neurotoxinas/toxicidade , Animais , Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Epigênese Genética/efeitos dos fármacos , Fluorescência , Congelamento , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Software , Coloração e Rotulagem
14.
Environ Toxicol ; 35(12): 1326-1333, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32662595

RESUMO

Organophosphate flame retardants (OPFRs) have become a growing concern due to their potential environmental and health risk. However, limited studies have described the toxicity, particularly neurotoxicity of alkyl and aromatic OPFRs. This study investigated the neurotoxicity of alkyl tri-n-butyl phosphate (TnBP) and aromatic tricresyl phosphate (TCP) to rat adrenal pheochromocytoma (PC12) cells for 24 h. Viability detection showed dose-response toxicity effect of TCP and TnBP to PC12 cells. The half-maximal inhibitory concentration of 24 h (24 h-IC50 ) of TCP and TnBP were 2415.61 and 338.09 µM, respectively. Both TnBP and TCP significantly changed the acetylcholinesterase (AChE) activity, and TnBP is more likely to cause neurotoxicity to PC12 cells compared to TCP. Also, The results of LDH and caspase-3 activity detection as well as Hoechst staining suggested that cell apoptosis induced by TCP and TnBP may be the primary pathway. These findings provide a toxicity data of aromatic and alkyl-substituted OPFRs to PC12 cells, and a new insight into the toxicity of OPFRs on health risk assessment.


Assuntos
Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neurônios/efeitos dos fármacos , Organofosfatos/toxicidade , Tritolil Fosfatos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neurônios/enzimologia , Neurônios/patologia , Células PC12 , Ratos
15.
Neurotoxicology ; 80: 76-86, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32585290

RESUMO

Indiscriminate overuse or occupational exposure to agricultural chemicals can lead to neurotoxicity. Many pesticides act to impair mitochondrial function which can lead to exacerbation of neurodegeneration. Triazole fungicides are applied to grain, fruit, and vegetable crops to combat mold and fungi and their use is increasing worldwide. Here, we assessed the in vitro toxicity of two widely used triazole fungicides, propiconazole and tebuconazole, to mitochondria using differentiated SH-SY5Y neuroblastoma cells as an in vitro cell model used in Parkinson's disease research. Cell viability (based on ATP levels), mitochondrial membrane potential, oxidative respiration, and reactive oxygen species (ROS) were measured following fungicide treatments. Cell viability was decreased with 100 µM propiconazole after 24 and 48 h, while tebuconazole required higher doses to affect viability (-200 µM at 24 h). Mitochondrial membrane potential (MMP) was reduced with 50 µM propiconazole after 24 h while 200 µM tebuconazole reduced MMP. Oxidative respiration of SH-SY5Y cells was then measured using a XFe24 Flux analyzer and 100 µM propiconazole reduced basal respiration, oligomycin-induced ATP production, and FCCP-induced maximum respiration by -40-50%, while tebuconazole did not affect mitochondrial bioenergetics at the concentrations tested. Acute exposure to 100 µM propiconazole over 4 h did not immediately affect oxidative respiration in SH-SY5Y cells. ROS were not induced by propiconazole and tebuconazole up to 100 and 300 µM respectively. Based on these results, we focused our lipidomics investigations on SH-SY5Y exposed only to propiconazole, as lipid dysregulation is associated with mitochondrial dysfunction. Both 50 and 100 µM propiconazole altered the abundance of some ceramides, specifically reducing glucosylceramide non-hydroxyfatty acid-sphingosine (HexCer-NS) and increasing N-stearoyl-phytosphingosine (CerNP). Moreover, a recently discovered bioactive lipid called fatty acid ester of hydroxy fatty acid (FAHFA) was increased 5-fold, hypothesized to be a neuroprotective mechanism that has been demonstrated in other studies of human diseases. Additional lipids reduced in abundance included oxidized phosphatidylcholine (OxPC) and oxidized phosphatidylethanolamine (OxPE). There were no changes in cellular triacylglycerols nor total lipids with exposure to propiconazole. Taken together, this study provides insight into the toxicity of triazole fungicides in neuronal cells, which has implications for neurodegenerative diseases that involve the mitochondria such as Parkinson's disease.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Triazóis/toxicidade , Linhagem Celular Tumoral , Humanos , Lipidômica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Oxirredução
16.
Int J Toxicol ; 39(4): 294-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468881

RESUMO

This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Animais , Encéfalo/patologia , Masculino , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Ratos Sprague-Dawley
17.
Methods Mol Biol ; 2138: 277-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219756

RESUMO

Coenzyme Q10 (CoQ10) plays a key role as an electron carrier in the mitochondrial respiratory chain and as a cellular antioxidant molecule. A deficit in CoQ10 status may contribute to disease pathophysiology by causing a failure mitochondrial energy metabolism as well as compromising cellular antioxidant capacity. This chapter outlines the analytical methods used for determining cellular CoQ10 status using high-pressure liquid chromatography with ultraviolet (HPLC-UV) detection. In addition, we present a pharmacological procedure for establishing a human neuronal cell model of CoQ10 deficiency, for use in research studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Neurônios/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ataxia/metabolismo , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/deficiência , Ubiquinona/metabolismo , Raios Ultravioleta
18.
Neurochem Res ; 45(5): 1215-1229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32140956

RESUMO

Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) in ischaemic stroke has been associated with neurotoxicity, blood brain barrier (BBB) disruption and intra-cerebral hemorrhage. To examine rtPA cellular toxicity we investigated the effects of rtPA on cell viability in neuronal, astrocyte and brain endothelial cell (bEnd.3) cultures with and without prior exposure to oxygen-glucose deprivation (OGD). In addition, the neuroprotective peptide poly-arginine-18 (R18D; 18-mer of D-arginine) was examined for its ability to reduce rtPA toxicity. Studies demonstrated that a 4- or 24-h exposure of rtPA was toxic, affecting neuronal cell viability at ≥ 2 µM, and astrocyte and bEnd.3 cells viability at ≥ 5 µM. In addition, a 4-h exposure to rtPA after a period of OGD (OGD/rtPA) exacerbated toxicity, affecting neuronal, astrocyte and bEnd.3 cell viability at rtPA concentrations as low as 0.1 µM. Treatment of cells with low concentrations of R18D (0.5 and 1 µM) reduced the toxic effects of rtPA and OGD/rtPA, while on some occasions a higher 2 µM R18D concentrations exacerbated neuronal and bEnd.3 cell toxicity in OGD/rtPA exposed cultures. In exploratory studies we also demonstrated that OGD activates matrix metalloproteinase-9 (MMP-9) release into the supernatant of astrocyte and bEnd.3 cell cultures, but not neuronal cultures, and that OGD/rtPA increases MMP-9 activation. Furthermore, R18D decreased MMP-9 activation in OGD/rtPA treated astrocyte and bEnd.3 cell cultures. In summary, the findings show that rtPA can be toxic to neural cells and that OGD exacerbates toxicity, while R18D has the capacity to reduce rtPA neural cellular toxicity and reduce MMP-9 activation in astrocytes and bEnd.3. Poly-arginine-18 peptides, which are being developed as neuroprotective therapeutics for ischaemic stroke, therefore have the additional potential of reducing cytotoxic effects associated with rtPA thrombolysis in the treatment of ischaemic stroke.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ativador de Plasminogênio Tecidual/toxicidade , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/toxicidade
19.
Curr Pharm Biotechnol ; 21(9): 780-786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31782362

RESUMO

Neurotoxicity, as well as cardiotoxicity and hepatotoxicity, resulting from administration of a test article is considered a major adverse effect both pre-clinically and clinically. Among the different types of neurotoxicity occurring during the drug development process, seizure is one of the most serious one. Seizure occurrence is usually assessed using in vivo animal models, the Functional Observational Battery, the Irwin test or electroencephalograms. In in vitro studies, a number of assessments can be performed using animal organs/cells. Interestingly, recent developments in stem cell biology, especially the development of Human-Induced Pluripotent Stem (iPS) cells, are enabling the assessment of neurotoxicity in human iPS cell-derived neurons. Further, a Multi-Electrode Array (MEA) using rodent neurons is a useful tool for identifying seizure-inducing compounds. The Consortium for Safety Assessment using Human iPS Cells (CSAHi; http://csahi.org/en/) was established in 2013 by the Japan Pharmaceutical Manufacturers Association (JPMA) to verify the application of human iPS cell-derived neuronal cells to drug safety evaluation. The Neuro Team of CSAHi has been attempting to evaluate the seizure risk of compounds using the MEA platform. Here, we review the current status of neurotoxicity and recent work, including problems related to the use of the MEA assay with human iPS neuronal cell-derived neurons, and future developments.


Assuntos
Desenvolvimento de Medicamentos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Convulsões/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Animais , Bioensaio , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Síndromes Neurotóxicas/patologia , Convulsões/patologia
20.
ALTEX ; 37(1): 121-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686111

RESUMO

A sizeable proportion of drug attrition is due to drug-induced seizures. Current available animal models frequently fail to predict human seizure liability. Therefore, there is a need for in vitro alternatives, preferably based on human-derived neurons to circumvent interspecies translation. The increasing number of commercially available human induced pluripotent stem cell (hiPSC)-derived neuronal models holds great promise for replacing rodent primary cultures. We therefore tested three different hiPSC-derived neuronal models for their applicability for in vitro seizure liability assessment. Using immunofluorescent staining and multi-well micro-electrode arrays we show that all models develop functional neuronal networks that exhibit spontaneous activity and (network) bursting behavior. Developmental patterns differ between the models, probably due to differences in model composition and seeding density. Nevertheless, neuronal activity and (network) bursting can be reproducibly modulated with the seizurogenic compounds strychnine, picrotoxin (PTX) and 4-aminopyridine (4-AP). However, the sensitivity and degree of chemical-induced effects differs between the models, which can likely be explained by differences in seeding density, maturation and different ratios of inhibitory and excitatory cell types. Importantly, compared to rat primary cortical neurons, the hiPSC-derived neuronal models were equally, or even better in the case of 4-AP, suited to detect seizurogenicity. Overall, our data indicate that hiPSC-derived neuronal models may in the future be used as a first screening tool for in vitro seizure liability assessment. However, before hiPSC-derived neuronal models can fully replace animal experiments, more compounds should be tested and the available models must be further characterized to fully understand their applicability.


Assuntos
Alternativas ao Uso de Animais , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Convulsões/induzido quimicamente , Animais , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA